Epigenetic repression of the estrogen-regulated Homeobox B13 gene in breast cancer.

نویسندگان

  • Benjamin A T Rodriguez
  • Alfred S L Cheng
  • Pearlly S Yan
  • Dustin Potter
  • Francisco J Agosto-Perez
  • Charles L Shapiro
  • Tim H-M Huang
چکیده

Several studies have reported that a high expression ratio of HOXB13 to IL17BR predicts tumor recurrence in node-negative, estrogen receptor (ER) alpha-positive breast cancer patients treated with tamoxifen. The molecular mechanisms underlying this dysregulation of gene expression remain to be explored. Our epigenetic analysis has found that increased promoter methylation of one of these genes, HOXB13, correlate with the decreased expression of its transcript in breast cancer cell lines (P < 0.005). Transcriptional silencing of this gene can be reversed by a demethylation treatment. HOXB13 is suppressed by the activation of estrogen signaling in ERalpha-positive breast cancer cells. However, treatment with 4-hydroxytamoxifen (4-OHT), an antiestrogen, abrogates the ERalpha-mediated suppression in cancer cells. The notion that this transcriptional induction of HOXB13 occurs in vitro with simultaneous exposure to both estrogen and 4-OHT may provide a biological explanation for its aberrant expression in many node-negative patients undergoing tamoxifen therapy. Interestingly, promoter hypermethylation of HOXB13 is more frequently observed in ERalpha-positive patients with increased lymph node metastasis (P = 0.031) and large tumor sizes (>5 cm) (P = 0.008). In addition, this aberrant epigenetic event is associated with shorter disease-free survival (P = 0.029) in cancer patients. These results suggest that hypermethylation of HOXB13 is a late event of breast tumorigenesis and a poor prognostic indicator of node-positive cancer patients.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-88: Comparing Epigenetic Profile of Oct4 Regulatory Region in Embryonal Carcinoma Cells under Retinoic Acid Induction

Background: Embryonal carcinoma (EC) cells derived from germ cell tumors are valuable tools for investigating differentiation and developmental biology processes in vitro. The advantage of the reproducible and rapid expansion of these cell lines provides a useful alternative to embryos for the study of mammalian cell differentiation. During early stages of cell differentiation, the rate of tran...

متن کامل

Estrogen-mediated epigenetic repression of large chromosomal regions through DNA looping.

The current concept of epigenetic repression is based on one repressor unit corresponding to one silent gene. This notion, however, cannot adequately explain concurrent silencing of multiple loci observed in large chromosome regions. The long-range epigenetic silencing (LRES) can be a frequent occurrence throughout the human genome. To comprehensively characterize the influence of estrogen sign...

متن کامل

Study of promoter CpG island hypermethylation of cyclindependent kinase inhibitor gene p21waf1/cip1 on some breast carcinoma cell lines

The p21 belongs to the CIP/KIP family of CDK inhibitors involved in cell cycle arrest at specific stages of the cell cycle progression. DNA methylation is the best studied epigenetic mark that have been evidently associated to chromatin condensation, and repression of gene transcription. The CpG island hypermethylation in promoter region of certain genes occurs in cancer cells and affects tumor...

متن کامل

Estrogen-mediated epigenetic repression of the imprinted gene cyclin-dependent kinase inhibitor 1C in breast cancer cells.

While tumor suppressor genes frequently undergo epigenetic silencing in cancer, how the instructions directing this transcriptional repression are transmitted in cancer cells remain largely unclear. Expression of cyclin-dependent kinase inhibitor 1C (CDKN1C), an imprinted gene on chromosomal band 11 p15.5, is reduced or lost in the majority of breast cancers. Here, we report that CDKN1C is supp...

متن کامل

Loss of estrogen receptor signaling triggers epigenetic silencing of downstream targets in breast cancer.

Alterations in histones, chromatin-related proteins, and DNA methylation contribute to transcriptional silencing in cancer, but the sequence of these molecular events is not well understood. Here we demonstrate that on disruption of estrogen receptor (ER) alpha signaling by small interfering RNA, polycomb repressors and histone deacetylases are recruited to initiate stable repression of the pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Carcinogenesis

دوره 29 7  شماره 

صفحات  -

تاریخ انتشار 2008